If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+1600t-14400=0
a = -16; b = 1600; c = -14400;
Δ = b2-4ac
Δ = 16002-4·(-16)·(-14400)
Δ = 1638400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1638400}=1280$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1600)-1280}{2*-16}=\frac{-2880}{-32} =+90 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1600)+1280}{2*-16}=\frac{-320}{-32} =+10 $
| x(x-2)=-8 | | 3v/3v-3=-5 | | 3v/3-3=-5 | | X=46-x | | 8n^2-5=-84 | | 36=3/2y | | w+3/4=3 | | 2x+0=20 | | 3/x+1+5/x-4=5/x+1 | | 16x^2+32x=80 | | -19x+11+12x-2=74 | | -6.8+7.4=b | | 6x-8x-10=-2x+3-10 | | 4x-4+33=5x-1+9x | | c/2+3=1- | | 121*8=x | | 7(y+2)=9y+24 | | 20x-40=21x-40 | | 3z/8+6=1 | | 112+12m=316 | | 6(x+3)-4=3x+3(4+x) | | 10x+10=-60 | | -14=-2/3w | | 9w+12=39 | | 5.25a-2(3a+1.25)=a+11 | | 1/4^(x-1)=4096 | | 3/7n=7 | | 203,000^2=x(83000x) | | 29n-126=280 | | -y+3=-18 | | 203,000^2=83,000(83,000x) | | 18 – 4a = 2 |